3.5.96 \(\int \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [496]

Optimal. Leaf size=157 \[ \frac {a^{3/2} (7 A+12 B+8 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}+\frac {a^2 (5 A+4 B-8 C) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}-\frac {a (A-4 C) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{2 d}+\frac {A \cos (c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{2 d} \]

[Out]

1/4*a^(3/2)*(7*A+12*B+8*C)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+1/2*A*cos(d*x+c)*(a+a*sec(d*x+c
))^(3/2)*sin(d*x+c)/d+1/4*a^2*(5*A+4*B-8*C)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)-1/2*a*(A-4*C)*sin(d*x+c)*(a+a*
sec(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.31, antiderivative size = 157, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.116, Rules used = {4171, 4103, 4100, 3859, 209} \begin {gather*} \frac {a^{3/2} (7 A+12 B+8 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{4 d}+\frac {a^2 (5 A+4 B-8 C) \sin (c+d x)}{4 d \sqrt {a \sec (c+d x)+a}}-\frac {a (A-4 C) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^{3/2}}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(a^(3/2)*(7*A + 12*B + 8*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(4*d) + (a^2*(5*A + 4*B -
 8*C)*Sin[c + d*x])/(4*d*Sqrt[a + a*Sec[c + d*x]]) - (a*(A - 4*C)*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(2*d)
 + (A*Cos[c + d*x]*(a + a*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(2*d)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 4100

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Cot[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 4103

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m +
n))), x] + Dist[1/(d*(m + n)), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n*Simp[a*A*d*(m + n) + B*(b*d
*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] &&
NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]

Rule 4171

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*
Csc[e + f*x])^n/(f*n)), x] - Dist[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m -
b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2 -
 b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || EqQ[m + n + 1, 0])

Rubi steps

\begin {align*} \int \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\frac {A \cos (c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{2 d}+\frac {\int \cos (c+d x) (a+a \sec (c+d x))^{3/2} \left (\frac {1}{2} a (3 A+4 B)-\frac {1}{2} a (A-4 C) \sec (c+d x)\right ) \, dx}{2 a}\\ &=-\frac {a (A-4 C) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{2 d}+\frac {A \cos (c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{2 d}+\frac {\int \cos (c+d x) \sqrt {a+a \sec (c+d x)} \left (\frac {1}{4} a^2 (5 A+4 B-8 C)+\frac {1}{4} a^2 (A+4 B+8 C) \sec (c+d x)\right ) \, dx}{a}\\ &=\frac {a^2 (5 A+4 B-8 C) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}-\frac {a (A-4 C) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{2 d}+\frac {A \cos (c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{2 d}+\frac {1}{8} (a (7 A+12 B+8 C)) \int \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a^2 (5 A+4 B-8 C) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}-\frac {a (A-4 C) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{2 d}+\frac {A \cos (c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{2 d}-\frac {\left (a^2 (7 A+12 B+8 C)\right ) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}\\ &=\frac {a^{3/2} (7 A+12 B+8 C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}+\frac {a^2 (5 A+4 B-8 C) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}-\frac {a (A-4 C) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{2 d}+\frac {A \cos (c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.80, size = 117, normalized size = 0.75 \begin {gather*} \frac {a \sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {a (1+\sec (c+d x))} \left (\sqrt {2} (7 A+12 B+8 C) \text {ArcSin}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\cos (c+d x)}+2 (A+8 C+(7 A+4 B) \cos (c+d x)+A \cos (2 (c+d x))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{8 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(a*Sec[(c + d*x)/2]*Sqrt[a*(1 + Sec[c + d*x])]*(Sqrt[2]*(7*A + 12*B + 8*C)*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]]*Sq
rt[Cos[c + d*x]] + 2*(A + 8*C + (7*A + 4*B)*Cos[c + d*x] + A*Cos[2*(c + d*x)])*Sin[(c + d*x)/2]))/(8*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(568\) vs. \(2(137)=274\).
time = 48.73, size = 569, normalized size = 3.62

method result size
default \(\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (7 A \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {2}+12 B \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {2}+8 C \sqrt {2}\, \cos \left (d x +c \right ) \sin \left (d x +c \right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right )+7 A \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sqrt {2}\, \sin \left (d x +c \right )+12 B \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sqrt {2}\, \sin \left (d x +c \right )+8 C \sqrt {2}\, \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sin \left (d x +c \right )-8 A \left (\cos ^{4}\left (d x +c \right )\right )-20 A \left (\cos ^{3}\left (d x +c \right )\right )-16 B \left (\cos ^{3}\left (d x +c \right )\right )+28 A \left (\cos ^{2}\left (d x +c \right )\right )+16 B \left (\cos ^{2}\left (d x +c \right )\right )-32 C \left (\cos ^{2}\left (d x +c \right )\right )+32 C \cos \left (d x +c \right )\right ) a}{16 d \cos \left (d x +c \right ) \sin \left (d x +c \right )}\) \(569\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

1/16/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(7*A*2^(1/2)*cos(d*x+c)*sin(d*x+c)*arctanh(1/2*(-2*cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)+12*B*cos(d*x+c)*(-2*cos(d
*x+c)/(1+cos(d*x+c)))^(3/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*si
n(d*x+c)*2^(1/2)+8*C*cos(d*x+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c))
)^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*sin(d*x+c)*2^(1/2)+7*A*2^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arc
tanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*sin(d*x+c)+12*B*arctanh(1/2*(-2*c
os(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*2^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*si
n(d*x+c)+8*C*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*2^(1/2)*(-2*cos(d
*x+c)/(1+cos(d*x+c)))^(3/2)*sin(d*x+c)-8*A*cos(d*x+c)^4-20*A*cos(d*x+c)^3-16*B*cos(d*x+c)^3+28*A*cos(d*x+c)^2+
16*B*cos(d*x+c)^2-32*C*cos(d*x+c)^2+32*C*cos(d*x+c))/cos(d*x+c)/sin(d*x+c)*a

________________________________________________________________________________________

Maxima [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]
time = 4.16, size = 340, normalized size = 2.17 \begin {gather*} \left [\frac {{\left ({\left (7 \, A + 12 \, B + 8 \, C\right )} a \cos \left (d x + c\right ) + {\left (7 \, A + 12 \, B + 8 \, C\right )} a\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (2 \, A a \cos \left (d x + c\right )^{2} + {\left (7 \, A + 4 \, B\right )} a \cos \left (d x + c\right ) + 8 \, C a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{8 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac {{\left ({\left (7 \, A + 12 \, B + 8 \, C\right )} a \cos \left (d x + c\right ) + {\left (7 \, A + 12 \, B + 8 \, C\right )} a\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (2 \, A a \cos \left (d x + c\right )^{2} + {\left (7 \, A + 4 \, B\right )} a \cos \left (d x + c\right ) + 8 \, C a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/8*(((7*A + 12*B + 8*C)*a*cos(d*x + c) + (7*A + 12*B + 8*C)*a)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) +
 2*(2*A*a*cos(d*x + c)^2 + (7*A + 4*B)*a*cos(d*x + c) + 8*C*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x
 + c))/(d*cos(d*x + c) + d), -1/4*(((7*A + 12*B + 8*C)*a*cos(d*x + c) + (7*A + 12*B + 8*C)*a)*sqrt(a)*arctan(s
qrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - (2*A*a*cos(d*x + c)^2 + (7*A + 4
*B)*a*cos(d*x + c) + 8*C*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d)]

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 8010 deep

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 733 vs. \(2 (137) = 274\).
time = 1.97, size = 733, normalized size = 4.67 \begin {gather*} -\frac {\frac {16 \, \sqrt {2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} C a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a} + {\left (7 \, A \sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 12 \, B \sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 8 \, C \sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a {\left (2 \, \sqrt {2} + 3\right )} \right |}\right ) - {\left (7 \, A \sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 12 \, B \sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 8 \, C \sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + a {\left (2 \, \sqrt {2} - 3\right )} \right |}\right ) + \frac {4 \, \sqrt {2} {\left (7 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{6} A \sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 12 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{6} B \sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 95 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} A \sqrt {-a} a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 76 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} B \sqrt {-a} a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 53 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} A \sqrt {-a} a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 36 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} B \sqrt {-a} a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 5 \, A \sqrt {-a} a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 4 \, B \sqrt {-a} a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}}{{\left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}\right )}^{2}}}{8 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

-1/8*(16*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*C*a^2*sgn(cos(d*x + c))*tan(1/2*d*x + 1/2*c)/(a*tan(1/2*d
*x + 1/2*c)^2 - a) + (7*A*sqrt(-a)*a*sgn(cos(d*x + c)) + 12*B*sqrt(-a)*a*sgn(cos(d*x + c)) + 8*C*sqrt(-a)*a*sg
n(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2
) + 3))) - (7*A*sqrt(-a)*a*sgn(cos(d*x + c)) + 12*B*sqrt(-a)*a*sgn(cos(d*x + c)) + 8*C*sqrt(-a)*a*sgn(cos(d*x
+ c)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3))) +
 4*sqrt(2)*(7*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^6*A*sqrt(-a)*a^2*sgn(cos(d
*x + c)) + 12*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^6*B*sqrt(-a)*a^2*sgn(cos(d
*x + c)) - 95*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4*A*sqrt(-a)*a^3*sgn(cos(d
*x + c)) - 76*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4*B*sqrt(-a)*a^3*sgn(cos(d
*x + c)) + 53*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*A*sqrt(-a)*a^4*sgn(cos(d
*x + c)) + 36*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*B*sqrt(-a)*a^4*sgn(cos(d
*x + c)) - 5*A*sqrt(-a)*a^5*sgn(cos(d*x + c)) - 4*B*sqrt(-a)*a^5*sgn(cos(d*x + c)))/((sqrt(-a)*tan(1/2*d*x + 1
/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*
c)^2 + a))^2*a + a^2)^2)/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\cos \left (c+d\,x\right )}^2\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^2*(a + a/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)

[Out]

int(cos(c + d*x)^2*(a + a/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2), x)

________________________________________________________________________________________